Package: HMTL 0.1.0

HMTL: Heterogeneous Multi-Task Feature Learning

The heterogeneous multi-task feature learning is a data integration method to conduct joint feature selection across multiple related data sets with different distributions. The algorithm can combine different types of learning tasks, including linear regression, Huber regression, adaptive Huber, and logistic regression. The modified version of Bayesian Information Criterion (BIC) is produced to measure the model performance. Package is based on Yuan Zhong, Wei Xu, and Xin Gao (2022) <https://www.fields.utoronto.ca/talk-media/1/53/65/slides.pdf>.

Authors:Yuan Zhong [aut, cre], Wei Xu [aut], Xin Gao [aut]

HMTL_0.1.0.tar.gz
HMTL_0.1.0.zip(r-4.5)HMTL_0.1.0.zip(r-4.4)HMTL_0.1.0.zip(r-4.3)
HMTL_0.1.0.tgz(r-4.5-any)HMTL_0.1.0.tgz(r-4.4-any)HMTL_0.1.0.tgz(r-4.3-any)
HMTL_0.1.0.tar.gz(r-4.5-noble)HMTL_0.1.0.tar.gz(r-4.4-noble)
HMTL_0.1.0.tgz(r-4.4-emscripten)HMTL_0.1.0.tgz(r-4.3-emscripten)
HMTL.pdf |HMTL.html
HMTL/json (API)

# Install 'HMTL' in R:
install.packages('HMTL', repos = c('https://hermitz9.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 158 downloads 5 exports 5 dependencies

Last updated 2 years agofrom:f00b438e84. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-winOKMar 25 2025
R-4.5-macOKMar 25 2025
R-4.5-linuxOKMar 25 2025
R-4.4-winOKMar 25 2025
R-4.4-macOKMar 25 2025
R-4.4-linuxOKMar 25 2025
R-4.3-winOKMar 25 2025
R-4.3-macOKMar 25 2025

Exports:MTL_classMTL_heteroMTL_regplot_HMTLSelection_HMTL

Dependencies:latticeMatrixplyrpROCRcpp